DYN3D –
New Developments in NURISP

Ulrich Rohde
Yuri Bilodid, Susan Duerigen, Andre Gommlich, Siegfried Mittag
Overview

• **WP 1.2 – Advanced deterministic methods**
 – Data interface between APOLLO 2.8 and DYN3D
 – Development and integration of the advanced DYN3D-SP3
 – Integration of flexible PPR on SALOME platform

• **WP 1.3 – Advanced few-group XS libraries generation**
 – Implementation of a new method for consideration of spectral history effects

• **WP 1.4 – Benchmarking**

• **WP 1.5 – User’s training for DYN3D**
Achievements in NURISP - DYN3D
Neutronic solvers

Rectangular

Hexagonal

Trigonal

Diffusion + SP3

Diffusion

Diffusion + SP3

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
Achievements in NURISP - DYN3D
Methodology for XS preparation

HELIOS

APOLLO 2.8

Modification of SAPHYB browser

SERPENT (outside of NURISP)

Consideration of spectral history effects during burn-up
Achievements in NURISP Integration into SALOME

- Full integration of DYN3D into SALOME by API (Application Programming Interface)
- Input deck generation by interactive graphical pre-processor

- Implementation of the new pin power reconstruction model into the DYN3D. Extension of the DYN3D-module API to provide the new PPR capabilities. Preparation for advanced code coupling (DYN3D – FLICA)

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
Data interface between APOLLO 2.8 and DYN3D

NEMTAB library format

- Multidimensional interpolation tables (ASCII format)
- Based on OECD/NEA and U.S. NRC PWR MOX/UO₂ Core Transient Benchmark
- 5D
 - Burn-up
 - Moderator density
 - Boron concentration
 - Fuel temperature
 - Moderator temperature
- Reading subroutine is included in DYN3D
 - Internal library number IWQS=22
Data interface between APOLLO 2.8 and DYN3D

SAPHYB browser
- Convert APOLLO2 output into NEMTAB library format
- Developed by CEA, modified by UPM
- Modified by HZDR for SPH-factors calculation

SPH factors
- Correction of homogenization error
- Calculated by DYN3D automatically in iterative way using fluxes from transport (APOLLO, HELIOS) solution
- SPH-factors are stored in NEMTAB library
The DYN3D code

DYN3D is a 3D nodal code with thermal-hydraulic feedback

- Steady-state and transient analyses of LWRs
- Square and hexagonal fuel assembly geometries
- Two-group and multi-group versions

Available neutronic solvers

- Square, hexagonal, and trigonal diffusion
- Square and trigonal simplified P_3 (SP_3) neutron transport

Motivation for DYN3D-SP_3 in trigonal geometry

- More accurate than P_1
- Applicable to reactors with hexagonal fuel assemblies
- Allows for flexible mesh refinement
- Core modeling with asymmetric assemblies

Development of the advanced DYN3D-SP_3
The SP$_3$ transport approximation

Spherical harmonics (P_N) approximation:
- Expansion of the angular flux in spherical harmonics up to the order N
- Occurrence of a large number of complex equations (multi-dim.)

Simplified P_N (SP$_N$) approximation:
- Multi-dimensional generalization of 1D P_N equations
 - \rightarrow Legendre expansion of the angular flux
- Less computational expensive than P_N approximation
- More accurate than diffusion ($\sim P_1$) approximation

SP$_3$ equations:

$$- D_0 \Delta \Phi_0 (\vec{r}) + \Sigma_{r_0} \Phi_0 (\vec{r}) - 2 \Sigma_{r_0} \Phi_2 (r) = S_0 (r)$$
$$- D_2 \Delta \Phi_2 (\vec{r}) - \frac{2}{5} \Sigma_{r_0} \Phi_0 (\vec{r}) + \left(\frac{4}{5} \Sigma_{r_0} + \Sigma_{r_2} \right) \Phi_2 (\vec{r}) = - \frac{2}{5} S_0 (\vec{r})$$

Pair of coupled diffusion-type equations
DYN3D – nodal solution on triangular geometry

Nodal expansion approach:

Innernodal flux solution as sum of

Specific solution of the inhomogeneous diffusion equation

General solution of the homogeneous equation (Helmholtz equations)

Orthonormal polynomials up to second order

Exponential functions

\[
\Phi_n^{A/B r} (x, y) = \sum_{k=0}^{3} c_{nk} h_k^{A/B} (x, y) + \sum_{j=1}^{2} \varepsilon_{nj} \sum_{l=1}^{3} d_{jl} \exp(B_j e_{l+1} \cdot r)
\]

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
Verification analysis

Reference fuel assembly
- Represented by 1536 trigonal nodes
- 151 fuel pins
- 18 guide tubes
- Presence of absorber rods
- reference solution with HELIOS code
Verification analysis

- DYN3D-DIF (8 gr.): 5.0% deviation from reference
- DYN3D-SP$_3$ (8 gr.): 1.2% deviation from reference

Normalized nodal powers and deviations from reference solution obtained by DYN3D-DIF and DYN3D-SP$_3$ (2- and 8-energy-group structure)

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
Development of the advanced DYN3D-SP3

Pin-wise calculations for color set (NURISP PWR lattice code benchmark)

<table>
<thead>
<tr>
<th>Diffusion</th>
<th>SP3</th>
<th>SP3 with SPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOX 4.0 37.5 GWd/t</td>
<td>UOX 4.2 0.15 GWd/t</td>
<td>UOX 4.2 0.15 GWd/t CR inserted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HELIOS-DYN3D</th>
<th>Diffusion</th>
<th>SP3</th>
<th>SP3 SPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δkeff, pcm</td>
<td>930</td>
<td>342</td>
<td>145</td>
</tr>
<tr>
<td>ΔPinPow, %</td>
<td>12</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>SD, %</td>
<td>2.1</td>
<td>1.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
The work was performed in collaboration with KIT (Karlsruhe).

Armando Gomez (KIT):
- Implementation of the new pin power reconstruction model into the DYN3D Fortran sources. Adding and modifying of subroutines and data structures.

Andre Gommlisch (HZDR):
- Extension of the existing DYN3D-module API to provide the new PPR capabilities.
 - Introduction of a new mesh creation and data mapping.
Integration the advanced DYN3D with PPR

DYN3D PPR domain

- New flexible setup of the PPR domain under study.
- Possible assignment of different assemblies of choice.
- Less impact to the existing DYN3D input structure.

```
$ Start of PPR setup
FLUX RECONSTRUCTION
$NREC
  5
$ IX  IY
$ Central FA
    0  0
$ South East
    1 -1
$ North East
    1  1
$ North West
  -1  1
$ South West
  -1 -1
$ IPRN
    1
$ End of PPR setup
```
Integration the advanced DYN3D with PPR

DYN3D-Module

- New mesh generator for pin by pin refinement of investigated assemblies.

- Advanced data mapping to MED fields for data exchange in case of code coupling and data visualization.

- Preparation for advanced code coupling (DYN3D – FLICA)
Integration of the advanced DYN3D with PPR

Result visualization on the NURESIM platform

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
Integration the advanced DYN3D with PPR

Example 1: Minicore 25 FA, CR Ejection at HZP in 0.1 sec

$t = 0.001\,\text{s}$
$t = 0.020\,\text{s}$
$t = 0.050\,\text{s}$
$t = 0.100\,\text{s}$
$t = 0.200\,\text{s}$
Integration the advanced DYN3D with PPR

Example 2: PWR Boron Dilution Benchmark

Refinement in bottom-left quadrant

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
Advanced few-group XS libraries generation

\section*{History effects in DYN3D}

\begin{itemize}
 \item History changes of homogenized cross sections are proportional to history change of Pu\(^9\) concentration

 \[\Sigma_{\text{actual}} = \Sigma_{\text{base}} \cdot \left[1 + k_h \left(\sqrt{\frac{N_{\text{Pu}}}{N_{\text{Pu}}^{\text{nominal}}}} - 1 \right) \right] \]

 \item The Pu-based historical correction decreases errors in single-assembly multiplication factor at least in one order of magnitude

 \item Method is proven for UOX, MOX and BA fuel for PWR and hexagonal fuel for VVER
\end{itemize}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{deviation_plot}
\caption{Deviation of \(k_{\infty}\) from the reference value (HELIOS) without and with correction for spectral history effects}
\end{figure}

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
History effects in DYN3D

- Application of Pu-correction results in power redistribution to upper part of reactor
- Power redistribution results in axial burnup distribution
- Burnup redistribution results in core criticality and length of the equilibrium cycle

2nd General Seminar, Karlsruhe, April 2 – 3, 2012
Acknowledgement

Thanks to Ulrich Grundmann for implementation of the SPH method into DYN3D, Armando Gomez (KIT) for implementation of the new pin power reconstruction model as well as Nikola Kolev (INRNE) for providing XS with APOLLO.

The work was supported by the EC within the NURISP project and co-funded by the German Federal Ministry of Economics and Technology.

Thanks for your attention.